ISSN 1600-5368

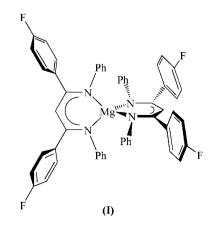
Bor-Hunn Huang, Ya-Liu Peng and Chu-Chieh Lin*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

Correspondence e-mail: cchlin@mail.nchu.edu.tw

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.113 Data-to-parameter ratio = 15.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[(1Z,3Z)-1,3-bis(4-fluorophenyl)-*N*,*N*'-diphenyl-propanediiminato]magnesium(II)

In the title complex, $[Mg(C_{27}H_{19}F_2N_2)_2]$, the Mg^{II} atom, lying on a crystallographic twofold rotation axis, is tetrahedrally coordinated by four N atoms from two diiminate ligands. Received 4 July 2006 Accepted 19 July 2006

Comment

Over the past two decades, significant advances have been made in the development of biocompatible and biodegradable materials for biomedical applications. Among biodegradable polymers, the aliphatic polyesters, such as $poly(\varepsilon$ -caprolactone) (PCL; Endo et al., 1987), poly(lactide) (PLA; Chamberlain et al., 1999) and their copolymers, are especially interesting for their applications in the medical field as biodegradable surgical sutures or as a delivery medium for controlled release of drugs (Ni & Yu, 1998). Therefore, there has been increasing interest in the development of efficient catalytic systems for the preparation of PLA and PCL. The major polymerization method used to synthesize these polymers has been the ring-opening polymerization (ROP) of lactones/lactides and functionally related compounds. Aluminium alkoxides (Duda et al., 1990), stannous (Sawhney et al., 1993), vttrium (Stevels et al., 1996) and trivalent lanthanide derivatives (Simic et al., 1997) have been reported to be effective initiators for ROP of lactones/lactides, giving polymers with both high molecular weights and high yields. However, the cytotoxicity and difficulties in removal of the catalyst from the resulting polymer have limited their utilization when a medical-grade polymer is required. An important task for developing new catalytic systems is to make the catalyst more compatible with the purpose of biomedical application. Lithium- (Ko & Lin, 2001), magnesium- (Shueh et al., 2004; Chamberlain et al., 2001), calcium- (Chisholm et al., 2003) and zinc-based (Chamberlain et al., 2001; Rieth et al., 2002) initiator systems seem to be active and to be suited for this purpose owing to their low toxicity and high activity.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

In the title mononuclear magnesium(II) compound, (I), the Mg^{II} atom is coordinated by four N atoms from two diiminato ligands, forming a distorted tetrahedral geometry (Fig. 1). The Mg^{II} atom lies on a twofold rotation axis. The Mg–N bond distances (Table 1) are somewhat shorter than those [2.123 (3) and 2.124 (3) Å] of the similar complex [Mg(BDI-1)(OiPr)]₂ {BDI-1 = 2-[(2,6-diisopropylphenyl)amido]-4-[(2,6-diisopropyl

Experimental

The title compound was prepared by the reaction of (1Z,3Z)-1,3bis(4-fluorophenyl)-N,N'-diphenylpropanediimine (0.82 g, 2.0 mmol) with dibutylmagnesium (1.1 ml of 1.0 *M* heptane solution, 1.1 mmol) in hexane (20 ml) at 298 K. The mixture was stirred for 4 h and was evaporated to dryness under vacuum. The residue was extracted with hexane (30 ml), and the extract was then concentrated to *ca* 15 ml. Yellow crystals were obtained after 16 h (yield 0.55 g, 85%).

Z = 4

 $D_x = 1.287 \text{ Mg m}^{-3}$

Parallelepiped, yellow 0.37 \times 0.34 \times 0.26 mm

4270 independent reflections

2339 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 298 (2) K

 $\begin{array}{l} R_{\rm int}=0.046\\ \theta_{\rm max}=26.0^\circ \end{array}$

Crystal data

$[Mg(C_{27}H_{19}F_2N_2)_2]$
$M_r = 843.19$
Monoclinic, $C2/c$
<i>a</i> = 22.0564 (15) Å
b = 10.5743 (7) Å
c = 19.4356 (13) Å
$\beta = 106.201 \ (1)^{\circ}$
$V = 4353.0 (5) \text{ Å}^3$

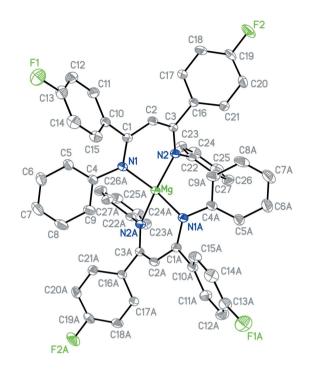
Data collection

Bruker SMART 1000 CCD diffractometer φ and ω scans Absorption correction: none 12188 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_0^2) + (0.0567P)^2]$
$wR(F^2) = 0.113$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
4270 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
285 parameters	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1


Selected geometric parameters (Å, $^{\circ}$).

Mg-N1	2.0266 (17)	N1-C1	1.341 (2)
Mg-N2	2.0439 (15)	N2-C3	1.333 (2)
F1-C13	1.359 (2)	C1-C2	1.402 (3)
F2-C19	1.358 (2)	C2-C3	1.404 (3)
N1-Mg-N1 ⁱ	118.76 (10)	N1-Mg-N2 ⁱ	114.47 (6)
N1-Mg-N2	92.91 (6)	N2-Mg-N2 ⁱ	125.67 (10)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

H atoms were placed in geometrically idealized positions (C–H = 0.93 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

Figure 1

A view of the molecular structure of (I) with displacement ellipsoids shown at the 20% probability level. All the H atoms have been omitted for clarity. The suffix A corresponds to symmetry code (i) in Table 1.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Science Council of the Republic of China is gratefully acknowledged. Helpful comments from the reviewers are also greatly appreciated.

References

- Bruker (1999). *SMART* (Version 5.0), *SAINT* (Version 5.0) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. **123**, 3229–3238.
- Chamberlain, B. M., Sun, Y., Hagadorn, J. R., Hemmesch, E. W., Young, V. G. Jr, Pink, M., Hillmyer, M. A. & Tolman, W. B. (1999). *Macromolecules*, 32, 2400–2402.
- Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2003). Chem. Commun. pp. 48–49.
- Duda, A., Florjanczyk, Z., Hofman, A., Slomkowski, S. & Penczek, S. (1990). Macromolecules, 23, 1640–1646.
- Endo, M., Aida, T. & Inoue, S. (1987). Macromolecules, 20, 2982-2988.
- Ko, B.-T. & Lin, C.-C. (2001). J. Am. Chem. Soc. 123, 7973–7977.
- Ni, Q. & Yu, L. (1998). J. Am. Chem. Soc. 120, 1645-1646.
- Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. (2002). J. Am. Chem. Soc. 124, 15239–15248.
- Sawhney, A., Pathak, C. P. & Hubbell, J. A. (1993). *Macromolecules*, **26**, 581–587.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shueh, M.-L., Wang, Y.-S., Huang, B.-H., Kuo, C.-Y. & Lin, C.-C. (2004). *Macromolecules*, 37, 5155–5162.
- Simic, V., Spassky, N. & Hubert-Pfalzgraf, I. G. (1997). *Macromolecules*, **30**, 7338–7340.
- Stevels, W. M., Ankone, M. T., Dijkstra, P. J. & Feijen, J. (1996). *Macromolecules*, 29, 3332–3333.